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a  b  s  t  r  a  c  t

The  concept  of similarity  plays  a fundamental  role  in  case-based  reasoning.  However,  the  meaning  of
“similarity”  can  vary  in  situations  and  is  largely  domain  dependent.  This  paper  proposes  a  novel  simi-
larity  model  consisting  of linguistic  fuzzy  rules  as  the  knowledge  container.  We  believe  that  fuzzy  rules
representation  offers  a  more  flexible  means  to express  the  knowledge  and  criteria  for  similarity  assess-
ment than  traditional  similarity  metrics.  The  learning  of  fuzzy  similarity  rules  is  performed  by  exploiting
eywords:
imilarity
ase-based reasoning
uzzy rules
earning

the  case  base,  which  is  utilized  as  a valuable  resource  with  hidden  knowledge  for  similarity  learning.  A
sample  of  similarity  is  created  from  a pair  of  known  cases  in  which  the  vicinity  of case  solutions  reveals
the  similarity  of  case  problems.  We  do pair-wise  comparisons  of  cases  in  the  case  base  to  derive  adequate
training  examples  for  learning  fuzzy  similarity  rules.  The  empirical  studies  have  demonstrated  that  the
proposed  approach  is  capable  of discovering  fuzzy  similarity  knowledge  from  a rather  low  number  of
cases, giving  rise  to  the  competence  of CBR  systems  to work  on a  small  case library.
. Introduction

Case-based reasoning (CBR) presents an important cognitive
ethodology in Artificial Intelligence, which advocates the use of

revious experiences to solve new problems [1].  A fundamental
rinciple that underlies CBR is the hypothesis that similar problems
ave similar solutions. Hence a CBR system first retrieves cases in
he case base that are similar to a query problem and then refines
he solutions of the retrieved cases to tackle the new situation at
and.

Similarity assessment plays a key role in CBR in that it decides
he quality of retrieved cases. A competent similarity model has
o reflect the real utility/relevance of cases for solving new prob-
ems [2].  So far a wealth of similarity measures has been established
or successful applications of CBR in various real-world scenarios.
unningham [3] proposed a coherent taxonomy which organized
he broad range of similarity mechanisms into the four categories
direct, information-based, transformation-based and emergent

easures). The work of this paper belongs to the first category and
ims to develop direct similarity models for cases with feature-
alue representation.

Our objective is to build the similarity model as a knowledge
ontainer to guide the CBR process [4].  Fuzzy if–then rules are

dopted in this paper as the form of knowledge representation
ue to the following two reasons. First, fuzzy rules provide a flex-

ble means to express the knowledge and criteria for similarity

∗ Tel.: +46 21 151716; fax: +46 21 103110.
E-mail address: ning.xiong@mdh.se

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.11.009
© 2012  Elsevier  B.V.  All rights  reserved.

assessment. Second, fuzzy rule based systems are proved univer-
sal approximators [5],  able to produce accurate reasoning results
for similarity evaluation. The learning of fuzzy similarity rules is
implemented by exploiting the case base. We  consider the case base
a valuable resource with hidden knowledge for similarity learn-
ing. A sample of similarity is created from a pair of known cases in
which the vicinity of case solutions reflects the similarity of case
problems. We do pair-wise comparisons of cases in the case base
to derive adequate training examples for learning fuzzy similarity
rules. The empirical studies have demonstrated that the proposed
approach is capable of discovering fuzzy similarity knowledge from
a very limited number of cases, giving rise to the competence of CBR
systems to work on a small case library.

The paper is organized as follows. Section 2 discusses related
works. Section 3 outlines a general CBR paradigm used in the paper.
The fuzzy similarity model for case matching is addressed in Section
4. Then, in Section 5, we  discuss the issue of how to learn these fuzzy
similarity rules from the case base. In Section 6, we present exper-
imental results for evaluation of the proposed method. Finally,
concluding remarks are given in Section 7.

2. Related works

The issue of similarity has received much research attention
from the CBR community. Plaza et al. [6] discussed the ways to

exploit similarity information for explaining CBR results in clas-
sification tasks. They indicated that suitable explanation can be
derived from building symbolic descriptions of similar aspects
among cases. They also illustrated that symbolic descriptions

dx.doi.org/10.1016/j.asoc.2012.11.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ning.xiong@mdh.se
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f similarity can be utilized to support various steps (including
etrieve, reuse, revise and retain) within a CBR process.

Conventionally similarity functions are constructed by means
f feature weighting [7].  Different weights are assigned to vari-
us features to reflect their importance, and the global similarity
valuation is defined as a weighted sum of the local matching val-
es in individual features. The weights can be adapted in terms of
he desired order of retrieved cases given by supervisors, see the
orks in [8–10]. Some other researchers attempted to search for the

est values of weights to optimize the accuracy of the CBR systems
11,12]. However, no matter how weights are derived, the capabil-
ty of these similarity functions is inherently constrained by their
tructure as the weighted combination of local matching degrees.
his weighted combination makes the restriction that variations in
eature weights can only affect case ranking in the similarity sky-
ine which is defined as a subset of cases that are closest to a query
roblem in the Pareto sense [13], and no case outside the skyline
ill get preference to be selected for reuse.

A new similarity model without feature weighting was  proposed
n [14] as an effort to seek more powerful representation of knowl-
dge for case retrieval. The idea was to encode the information
bout feature importance into local compatibility measures such
hat feature weighting is no longer needed. Further the parameters
f such compatibility measures can be learned from the case base
n reflection of the true utility of cases. It was also explained and
nalyzed that this new similarity model can approximate case util-
ty more competently than traditional similarity measures using
eature weights.

Similarity has been studied in view of fuzzy theory by some
esearchers. In [15] the central notion of similarity was treated
s a fuzzy relation and fuzzy operations were applied as a tool
or building composite similarity measures. The use of general-
zed aggregation operators such as OWA-operators was suggested
y [16] as a more flexible means to combine local similarity val-
es into a global assessment. More recently, the concept of fuzzy
imilarity was defined and modeled as T-equality in terms of
uzzy residual implications to assess the similarity of fuzzy sets
17].

Dubois et al. [18,19] analyzed the relation between CBR and
uzzy rule-based reasoning and indicated that the fundamental
ypothesis of CBR could be formalized in the context of fuzzy
ules. It follows that one can consider and implement case-based
nference as a special type of fuzzy set-based approximate reason-
ng. Fuzzy methods were also employed to model user preference
nd decision principles for case-based recommendation [20]. On
he other hand, CBR can be used to assist fuzzy systems as well.
n [21] it was demonstrated that CBR could be exploited as fea-
ure selection criterion for building compact fuzzy knowledge
ases.

. Case-based reasoning: a general paradigm

The general idea of the case-based approach is exploitation of
nformation in the previous cases to solve a new problem. A general
BR paradigm used in this paper is shown in Fig. 1. It starts with
imilarity matching between a query problem and known cases
n the case library. A properly defined similarity function has to be
mployed in this stage. As the evaluated similarity values reflect the
tility or appropriateness of solutions of the known cases, they offer

mportant information to be utilized in the next step of decision
usion to figure out a final solution for the problem in query.
In decision fusion, we follow the inference rule that “The more
imilar the two cases are, the more possible it is that their solu-
ions are similar” [20]. Further, we presume a finite number of
iscrete solutions in the context of this paper. We  define the degree
Fig. 1. An overview of the case-based approach.

of possibility contributed by a single case Ci (i is the index of the
case in the case base) by

Pi(b) =
{

Sim(Q, Ci) if Solution(Ci) = b

0 if Solution(Ci) /= b
(1)

where b represents a candidate solution, and Sim(Q, Ci) denotes the
degree of similarity between query problem Q and case Ci. It bears
mentioning that the possibility in (1) indeed represents a degree
of confirmation, which is supported by the observation that case Ci
has a solution identical to b. On the other hand, we will have Pi(b) = 0
if Ci has a solution different from b, whereas it merely means that
no information on solution b is derived from case Ci rather than the
impossibility of b as the solution to the query problem Q.

Next we consider the overall possibility distribution in terms of
the whole case library. For calculating the overall possibility P(b) for
solution b, we only need to focus on a subset of cases which have
that solution. This is owing to the fact that all other cases in the case
library contribute no information for the possibility of solution b,
as indicated in Eq. (1).  Generally, P(b) should be established as an
aggregation of the possibility estimates from the individual cases in
this case subset. The ordered weighted averaging (OWA) operators
[22] provide a class of aggregation operators lying between “and”
and “or” aggregations. Herein we adopt the S-OWA-OR (OR-like)
aggregating operators [23] as the parameterized OWA  functions to
combine the possibility estimates given by individual cases in the
case subset. Let Sb = {i|Solution(Ci) = b} denote the set of indices
of the cases having solution b, the overall possibility P(b) can be
derived via the S-OWA-OR operator ( ∨̃) as follows:

P(b) = ∨̃
i ∈ Sb

Pi(b) = (1 − ˛)
1

|Sb|
∑
i ∈ Sb

Pi(b) +  ̨ max
i ∈ Sb

{Pi(b)} 0 ≤  ̨ ≤ 1

(2)

where |Sb| is the cardinality of the set Sb.
We calculate the overall possibility value for every candidate

solution according to (2).  Finally we  select the solution b∗ that has
the largest possibility value among candidates as the solution for
query problem Q, i.e.

b∗ = arg
∀b

max[P(b)] (3)

It is clear from Eqs. (1)–(3) that similarity degrees play a central
role in possibility assessment and thereby exert crucial influence
evaluation is paramount to the success of many case-based rea-
soning systems in practice. In the rest of this paper we will discuss
how such a similarity model can be realized by fuzzy rule based
reasoning and learning.
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. Fuzzy rules based similarity model

This section explains how similarity matching between cases
an be implemented by fuzzy rules based reasoning. We  will start
ith discussing the benefits of fuzzy rules as similarity model in

ection 4.1.  Then we explain the general rule structure and fuzzy
easoning procedure employed for similarity assessment in Section
.2.

.1. The benefits of fuzzy rule based similarity model

We aim to apply fuzzy-rule based reasoning to replace tradi-
ional distance based similarity functions in our hybrid CBR system.
very case in the case library is evaluated by fuzzy rules as how
uch it is similar to a new problem in query. Introducing fuzzy rules

s criteria for similarity assessment brings the following significant
dvantages:

1) Fuzzy rules appear more flexible to express the knowledge
and criteria about similarity between cases than distance-
based matching functions. They are therefore capable of making
more sophisticated similarity models for complex application
domains.

2) Fuzzy rule-based representation makes it possible for the CBR
system to integrate incomplete domain knowledge (if any) in
the reasoning procedure. Heuristic expert knowledge can be
acquired and formulated into linguistic fuzzy rules by applying
knowledge engineering technique. Further the rules acquired
from experts can be used as extra rules to supplement the fuzzy
rules generated from the case base to achieve more comprehen-
sive knowledge for real-world applications.

3) Fuzzy linguistic rules are easily understandable for humans.
They can well explain how and why a case has been judged
as similar to a query problem. Such transparency of the fuzzy
similarity model would be important for users to comprehend
the procedure and to interact with the CBR system.

.2. Fuzzy rules and reasoning for similarity assessment

Suppose that there are n features for problems in the underlying
omain. A case Ci (i is the case index) in the case base is represented
y an (n + 1) tuple: Ci = (yi1, yi2, . . . , yin, Si) where yi1, yi2, . . . , yin

enote the feature values in this case and Si is the corresponding
olution. In the same manner we use an n-tuple (z1, z2, . . . , zn) to
epresent a query problem Q with zj representing value of the jth
eature in the problem. For comparing case Ci and query problem
, we first need to calculate the values of differences xj = |zj − yij|
n every feature j between them. Such feature differences are then
mployed as inputs for fuzzy-rule based reasoning to decide the
imilarity value between case Ci and query problem Q.

Assume that the fuzzy sets of feature difference xj (j = 1. . .n) are
epresented by A(j, 1), A(j, 2), . . .,  A(j, q[j]) and q[j] is the number of
inguistic terms (fuzzy sets) for xj. The fuzzy rules employed in this
aper for assessing case similarity are formulated as follows:

f [x1 = ∪
k ∈ D(1)

A(1, k)] and [x2 = ∪
k ∈ D(2)

A(2, k)] and . . . and

[xn = ∪
k ∈ D(n)

A(n, k)] Then Similarity = V (4)

here D(j) ⊆ {1, 2, . . . q[j]} for j = 1. . .n, and V ∈ {1.0, 0}. As the con-
lusion of this rule is a singleton being either unity or zero, it can
e considered as a zero-order Sugeno fuzzy rule.
The premise structure of the rules in (4) is characterized by
he sets D(j) (j = 1. . .n). The integers in D(j) correspond to the
inguistic terms of xj that are included with OR-connection in
he rule condition. The OR-connection of input fuzzy sets in
Fig. 2. Rule premise with OR-connection of fuzzy sets.

premises is a nice property for fuzzy rules. Such rules can cover
a group of elementary rules that use complete AND connections
of single linguistic terms as rule conditions. For instance, the rule
“If (x1 = NZ ∨ PZ) and (x2 = NZ ∨ PZ) then Similarity = 1.0” has the
premise as illustrated in Fig. 2, and it covers the four elementary
rules as follows:

1) If (x1 = NZ) and (x2 = NZ) Then Similarity = 1.0
2) If (x1 = NZ) and (x2 = PZ) Then Similarity = 1.0
3) If (x1 = PZ) and (x2 = NZ) Then Similarity = 1.0
4) If (x1 = PZ) and (x2 = PZ) Then Similarity = 1.0

A special case that may  occur with the rules in (4) is the situation
when D(j) = {1, 2, . . . q[j]}, i.e. all linguistic terms of the input xj are
included in the union for the rule condition. The meaning of this
is that we do not care the value of xj in the premise. It follows
that the input xj is actually excluded from the condition part of the
rule for reasoning. If a fuzzy rule includes all input variables in its
condition, we say that this rule has a complete structure, otherwise
its structure is incomplete.

Rules having incomplete structure or union of fuzzy sets in
premises can achieve larger coverage of input domain, leading to
substantial reduction of the number of rules [24,25].  Hence they
are very beneficial to be employed in complex decision problems
with high input dimensionality.

Finally, based on a set of fuzzy similarity rules in the form of (4),
we do fuzzy reasoning in the following steps to estimate the degree
of similarity between case Ci and query problem Q:

(1) Calculate the vector of feature differences (x1, x2, . . .,  xn)
between Q and Ci, with xj = |zj − yij| for j = 1. . .n.

(2) Calculate the firing strength of every rule Rk using the feature
differences as inputs

tk(x1, x2, . . . , xn) = �PRk
(x1, x2, . . . , xn) (5)

where �PRk
(x1, x2, . . . , xn) denotes the membership grade of

the vector (x1, x2, . . . , xn) with respect to the premise of rule
Rk.

(3) Estimate the degree of similarity by aggregating conclusions of
the rules according to their firing strengths. Suppose Vk is the
singleton conclusion for rule Rk, the similarity value between

query problem Q and case Ci is derived as

Sim(Q, Ci) =
∑

∀ktk(x1, x2, . . . , xn) · Vk∑
∀ktk(x1, x2, . . . , xn)

(6)
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. Learning fuzzy rules from case bases

Supervised learning is performed in this paper to generate fuzzy
ules for the similarity model. We  need a “teacher” to specify sam-
les of desired similarity values for various pairs of cases as training
xamples. The task of learning is to revise fuzzy similarity rules
o reduce the discrepancy between the desired similarity scores as
iven by the “teacher” and the estimated similarity values produced
y the (similarity) model. The general learning paradigm is shown

n Fig. 3 in which a learning algorithm is entailed to adapt the fuzzy
imilarity model using approximation errors as feedback.

One of the key issues in implementing the above learning
aradigm is how to acquire sufficient training examples specified
y a “teacher”. In many situations it is hard to have a domain expert
o do such job due to either economic reasons or the lack of domain
nowledge. In the next subsection we shall develop an alternative
teacher” function which exploits the information of cases in the
ase library to derive training examples for similarity learning.

.1. Deriving training examples from the case library

Recall that similarity model is used in CBR to identify really use-
ul cases for solving a new problem. We  require similarity estimates
o reflect the true usefulness of solutions of cases. As shown in Fig. 4,
he similarity score Sim(Q, Ci) evaluates the relation between the
ew problem Q and known case Ci based on problem descriptions
hile the utility function indicates how useful the solution of case
i will be for solving the problem Q. What we pursuit is precise
pproximation of the utility function by the similarity values, i.e.

im(Q, Ci) = Utility(Ci, Q ) (7)

Fig. 3. Supervised learning of the fuzzy similarity model.

Solu�on Si

Problem Pi

New 
proble m Q

Ci=(P i, Si)

Sim(Q, Ci)

U�lity(Ci, Q)

Fig. 4. The similarity and utility measures.
ng 13 (2013) 2057–2064

for any query problem Q and case Ci. The relation in (7) implies that
the desired similarity value for a pair of cases can be set to equal
the degree of utility for one case to solve the problem in the other
case.

Further utility values between cases can be derived by compar-
ing case solutions. Let Si and Sj be the solutions in cases Ci and Cj
respectively. The utility of Ci with respect to Cj can be determined
by examining the relation between Si and Sj. The closer solution Si
appears to solution Sj, the more useful solution Si will be for prob-
lem solving in case Cj. In view of this, we define utility between
cases as equivalent to the vicinity between their solutions. Thus
we can write:

Utility(Ci, Cj) = Vic(Si, Sj) (8)

The criterion to assess vicinity between solutions heavily
depends on the scenario; hence it is not possible to make more
detailed discussion on formula (8) without considering problem
context and specifics. Nevertheless, for some applications with dis-
crete and non-ordered solutions, the vicinity between solutions can
simply be defined by a binary function as

Vic(Si, Sj) =
{

1 if Si = Sj

0 if Si /= Sj

(9)

The utility derivation stated above enables us to acquire many
utility values for pairs of cases from the case library. They are then
used as desired similarity values (for the corresponding case pairs)
in the training examples for fuzzy similarity learning. Since we  can
yield a degree of utility for every pair of cases in the case library, a
much larger multitude of training samples than the number of cases
can be created. Next, as shown in Fig. 5, the task of the learning
algorithm is to evolve the fuzzy knowledge base in the similar-
ity model to produce similarity estimates that comply with the
training samples derived from the case library.

5.2. Learning fuzzy rules by genetic algorithms

In this paper we  adopt the method of genetic algorithms (GAs)
[26] as the learning mechanism to automatically create fuzzy simi-

larity rules from training examples. GAs are stochastic optimization
algorithms that emulate the mechanics of natural evolution. They
are superior to traditional optimization techniques mainly in the
following two aspects. First, a GA evaluates many points in the

Fig. 5. Fuzzy similarity learning based on training examples derived from the case
base.
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earch space simultaneously, as opposed to a single point, thus
educing the chance of converging to the local optimum. Second,

 GA uses only values of objective functions; therefore they do not
equire the search space to be differentiable or continuous.

Essentially, a GA is an iterative procedure maintaining a constant
opulation size. An individual in the population encodes a possible
olution to the problem with a string analogous to a chromosome in
ature. At each step of iteration, new strings are created by apply-

ng genetic operators on selected parents, and subsequently some
f the old weak strings are replaced by new strong ones. In this man-
er, the performance of the population will be gradually improved

n the evolutionary process.
More concretely, the GA is employed here to identify suitable

remises of the fuzzy rules in (4) for different conclusions. This
roblem that the GA handles is termed as premise learning. We
ant to systematically explore under what circumstances two

ases in matching should have a similarity degree of unity and
nder what situations the value of similarity should be zero. We
ttempt to utilize the strength of the GA to find best premise struc-
ures together with parameters of associated fuzzy membership
unctions to optimize similarity modeling accuracy in terms of the
raining examples. In the sequel we shall briefly discuss coding
cheme, genetic operators and fitness evaluation which present key
oints for the genetic learning of rule premises.

Genetic Coding Scheme. The information concerning structure
f rule premises can be represented by a set of discrete parame-
ers, while the information about fuzzy set membership functions
s described by a set of continuous parameters. Owing to the differ-
nt nature between the information about rule structure and about
embership functions, a hybrid string consisting of two substrings

s used here as the coding scheme. The first substring is a binary
ode representing premise structure of the fuzzy knowledge base,
nd the second substring is a code with real numbers corresponding
o parameters of the fuzzy sets used by the fuzzy rules.

Usually membership functions of a feature difference as input
re characterized by a set of continuous parameters. These contin-
ous parameters are combined to form a vector of real numbers
epicting the fuzzy partition of that input variable. We  then merge
ogether real number vectors for all inputs (feature differences) to
et the whole real-valued substring. A code with real-numbers to
epresent membership functions will deliver higher resolution of
olutions than binary or integer codes.

Regarding the code of rule premises, we can see from (4) that
he premise structure of a rule is decided by the integer sets D(j)
j = 1. . .n). Since an integer from {1, 2, . . .,  q[j]} is either included
n the set D(j) or excluded from it, a binary code appears a natu-
al choice for encoding the structure of premises. For every feature
ifference xj, q[j] binary bits are needed to depict the set D(j) ⊆
1, 2, . . . q[j]} with bit “1” representing the presence of the corre-
ponding fuzzy set in the OR-connection and vice versa. If feature
ifference xj does not appear in the premise, we use q[j] one-bits to
escribe the wildcard of “don’t care”. For instance, the condition “if
x1 = (small or large)] and [x3 = medium] and [x4 = (medium or large)]”
an be coded by the binary group (101; 111; 010; 011).

Further, the whole substring for the premise structure of the
ule base is a merge of bit groups for all individual rule premises.
t is worthy to note that the following two situations with a binary
roup lead to an invalid premise encoded: (1) all the bits in the
roup are equal to one, meaning that no feature differences are
onsidered in the premise and (2) all bits for a feature difference
re zero; this input variable thus takes no linguistic term in the
remise resulting in an empty fuzzy set in the rule condition part.

ules with invalid premises are meaningless, play no role in fuzzy
easoning and therefore have to be discarded. Through elimination
f invalid rule premises, the actual rule number can be reduced from
he upper limit given by users. This implies an opportunity to adjust
ng 13 (2013) 2057–2064 2061

the size of the rule base within certain constraints by employing the
GA.

Crossover. By the operation of crossover, parent hybrid strings
(old fuzzy similarity models) mix  and exchange their information
through a random process, so that offspring (new fuzzy similarity
models) with even higher performance than current individuals
will be generated. Owing to the distinct nature between the two
substrings, it is preferable that the information in both substrings
be mixed and exchanged separately. Here a three-point crossover
is used. One breakpoint of this operation is fixed to be the split-
ting point between both substrings, and the other two breakpoints
are randomly selected within the two  substrings respectively. At
breakpoints the parent bits are alternatively passed on to the off-
spring. This means that offspring get bits from one of the parents
until a breakpoint is encountered, at which they switch and take
bits from the other parent.

As an illustrative example, consider the two hybrid strings in
the following:

HS1 = (b1
1, b2

1, b3
1, b4

1, b5
1, b6

1, b7
1, b8

1, b9
1, b10

1 , b11
1 , b12

1 |c1
1, c2

1, c3
1, c4

1, c5
1, c6

1)

HS2 = (b1
2, b2

2, b3
2, b4

2, b5
2, b6

2, b7
2, b8

2, b9
2, b10

2 , b11
2 , b12

2 |c1
2, c2

2, c3
2, c4

2, c5
2, c6

2)

Both HS1 and HS2 consist of two substrings (b1
i
, b2

i
, . . . , b12

i
),

(c1
i
, c2

i
, . . . , c6

i
) (i = 1, 2) representing premise structure and param-

eters of fuzzy set membership functions respectively. The position
between b12

i
and c1

i
is the splitting point between two substrings.

Selecting the other two  breakpoints for the crossover operator at
the position between b5

i
, b6

i
and the position between c4

i
, c5

i
respec-

tively, we obtain the two  child strings as follows:

HS3 = (b1
1, b2

1, b3
1, b4

1, b5
1, b6

2, b7
2, b8

2, b9
2, b10

2 , b11
2 , b12

2 |c1
1, c2

1, c3
1, c4

1, c5
2, c6

2)

HS4 = (b1
2, b2

2, b3
2, b4

2, b5
2, b6

1, b7
1, b8

1, b9
1, b10

1 , b11
1 , b12

1 |c1
2, c2

2, c3
2, c4

2, c5
1, c6

1)

Mutation. Mutation is a local operator that transforms the bits
of a hybrid string, so as to increase the variability of the population.
Because of the distinct substrings used, different mutation schemes
are needed. Since parameters of input membership functions are
continuous, a small mutation with high probability is more mean-
ingful. Therefore it is so designed that each bit in the substring for
membership functions undergoes a disturbance. The magnitude of
this disturbance is determined by a Gaussian density function. For
the binary substring representing structure of rule premises, muta-
tion is simply to inverse a bit, replace ‘1’ with ‘0’ and vice versa.
Every bit in this substring undergoes a mutation with a quite low
probability.

Fitness function. An individual (hybrid string), HS,  in the popula-
tion is evaluated according to its accuracy in modeling similarity
according to the training examples. As many pairs of cases are
included in the training data set, we have to consider the total sum
of modeling errors for measuring the overall performance of the
hybrid string. The total error function is given by

Error(HS) =
∑

(i,j) ∈ SI

|utility(Ci, Cj) − Sim(Ci, Cj)| (10)

where SI refers to the set of pairs of case indexes corresponding to
pairs of cases included in the set of training examples. In this paper
we only focus on problems with discrete solutions, the general error
function in (10) can be specialized into
Error(HS) =
∑

(i,j) ∈ SI

{
1 − Sim(Ci, Cj) if Si = Sj

Sim(Ci, Cj) if Si /= Sj

(11)
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parison. It is seen from the tables that our method could produce
good classification results similar to those reported by others, not
to mention that the accuracy on the Cleveland data acquired in this
paper is strongly dominating over all others. In the other aspect,

Table 2
The results on the Iris data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.959 50
C4.5  [28] 0.947 135
062 N. Xiong / Applied Soft Co

here Si and Sj are solutions in cases Ci and Cj respectively. Further
he fitness of individual HS is defined with inverse relation to the

ean modeling error as follows

itness(HS) = 1 − Error(HS)
|SI| (12)

At last, we summarize the GA for learning fuzzy similarity model
s follows:

Step 1: Generate initial population Pop(0) composed of randomly
generated hybrid strings and evaluate their fitness values with
(12).
Step 2: Select parents from current population Pop(t) according to
probability distribution based on fitness values of individuals.
Step 3: Apply genetic operators on the selected parents to produce
a set of offspring.
Step 4: Evaluate the fitness values of the offspring with (12).
Step 5: Choose the L best individuals from the population Pop(t)
and the offspring set to form the next generation Pop(t + 1) (L is
the population size).
Step 6: Terminate the search procedure if a satisfactory fuzzy sim-
ilarity model is found or the maximal number of generations is
reached. Otherwise go to Step 2.

. Experimental evaluations

To evaluate the capability of the proposed method, we show
n this section the experimental results on six well-known data
ets from the UCI Machine Learning Repository [27]. All these data
ets contain cases characterized by numerical features and discrete
lasses, with the numbers of features ranging from 4 to 13 and the
umbers of classes between 2 and 6, as illustrated in Table 1. We
sed the classification accuracy based on small case bases as the
riterion to evaluate the learning ability of our proposed approach.

e  also compared our work with some other machine learning
echniques on the same data sets according to both classification
ccuracy and the number of cases used for learning.

.1. Scheme of learning in experiments

We constructed fuzzy similarity rules by learning from case
ases in the experiments. Each feature difference xj was assigned
ith three fuzzy sets A(j, 1), A(j, 2), and A(j, 3) when testing with

ll the six data sets. The membership functions of these three
uzzy sets, as illustrated in Fig. 6, can be interpreted with lin-
uistic terms such as small, medium, and large respectively. The
A was employed to search for the rule premises under different
onsequences (similarity = 1.0, similarity = 0) and to optimize the
arameters (corresponding to the circle in Fig. 6) of the fuzzy set
embership functions at the same time. The objective of the GA

as to find the optimal solution (fuzzy knowledge base) to maxi-
ize the fitness function in (12). The learnt fuzzy rules were used in

uzzy reasoning to assess the similarity of known cases with respect
o a query problem.

able 1
he six data sets used in the evaluation.

Data set Case number Feature number Number of
classes

Iris 150 4 3
Wine 178 13 3
Pirma 768 8 2
New-Thyroid 215 5 3
Breast-W 699 9 2
Cleveland 297 13 2
0.0 1.0

Fig. 6. The three membership functions for feature difference xj .

Experiments were repeated 20 times on each of the data sets in
the evaluation. In every experiment we  randomly selected a smaller
part of a date set as the case base used for similarity learning and the
rest (bigger) part as the test data set providing query problems. The
fuzzy rules derived from the case base were used as the similarity
model of the CBR system applied to classify problems in the test
data.

6.2. Classification results based on small case bases

Since our particular purpose was  to examine the learning ability
of the proposed approach with a low number of cases, only a small
subset (minority) of a data set was selected randomly as the case
base and the remaining cases were treated as the test data. The
portions of instances entering the case bases are 10% for Pirma and
Breast-W data sets, 20% for Cleveland data set, and 33% for Iris, Wine
and New-Thyroid data sets. This is in contrast to the common ways
of validation in machine learning, where the majority of known
examples are usually treated as training data rather than test data.
We did the experiments 20 times for all data sets and each time
with a randomly selected case base.

Tables 2–7 illustrate the mean accuracy of classification on test
data obtained from each of the data sets together with the num-
bers of cases available for learning. We  also give the figures with
some other machine learning techniques in these tables for com-
IGA  classifier [29] 0.951 135
Ref.  [30] 0.953 135
Ref.  [25] 0.967 144

Table 3
The results on the Wine data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.923 59–60
C4.5  [28] 0.901 160–161
IGA classifier [29] 0.937 160–161
Ref. [30] 0.916 160–161
Ref. [31] 0.944 160–161
SOP-3 [32] 0.935 160–161
MOP-3 [32] 0.970 160–161
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Table  4
The results on the Pirma data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.713 76–77
C4.5  [28] 0.698 691–692
IGA classifier [29] 0.752 691–692
Ref. [30] 0.693 691–692
Ref. [31] 0.750 691–692
SOP-3 [32] 0.758 691–692
MOP-3 [32] 0.782 691–692

Table 5
The results on the New-Thyroid data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.907 71–72
C4.5  [28] 0.940 193–194
IGA classifier [29] 0.940 193–194
Ref. [30] 0.949 193–194

Table 6
The results on the Breast-W data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.934 69–70
Ref.  [25] 0.910 583
C4.5 [28] 0.948 629–630
IGA classifier [29] 0.953 629–630
Ref. [30] 0.949 629–630
Ref. [31] 0.949 629–630
SOP-3 [32] 0.964 629–630
MOP-3 [32] 0.973 629–630

Table 7
The results on the Cleveland data and comparison with others.

The methods Accuracy on
test data

Number of cases
used for learning

This paper 0.761 59–60
Ref.  [31] 0.537 267–268
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SOP-3 [32] 0.546 267–268
MOP-3 [32] 0.574 267–268

e employed a much lower number of cases for learning than any
ther work as indicated in the tables. This shows a very interesting
erit of our proposed method that it can succeed in learning from

 very limited amount of examples. This can be attributed to the
air-wise comparisons of cases in the case library, which produce
ultiplication of training patterns for fuzzy-rule based similarity
odeling.

. Conclusion

This paper puts forward a new method of employing fuzzy
ules as the representation of similarity models in CBR research.
uzzy rules are considered a more powerful vehicle to accommo-
ate rich domain knowledge than conventional similarity metrics.
uzzy rule-based reasoning is conducted to estimate the degrees
f similarity between cases in the case library and a new problem.
urther we explain that fuzzy similarity rules can be generated by
xploiting the information from a rather small case library. This is

 very attractive advantage and empowers CBR systems to succeed

n problem domains where only a low number of experiences are
vailable.

Moreover, we would like to mention that learning of simi-
arity rules from pairs of cases can be considered as a sort of

[

[

ng 13 (2013) 2057–2064 2063

relation-oriented learning. This may  be a new contribution to the
family of supervised learning. Rather than mimicking the behavior
in individual instances as is usually done, the focus of our work is to
model the relations between instances that implicitly reside within
the set of known cases.
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